Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography
نویسندگان
چکیده
The behaviour of granular solid-liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress-strain response at 64-93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils.
منابع مشابه
Application of time-resolved in-situ X-ray absorption spectroscopy in solid-state chemistry.
Time-resolved X-ray absorption spectroscopy (TR-XAS) possesses excellent capabilities to reveal quantitative phase composition and average valence together with the evolution of the local structure of a system under dynamic reaction conditions. The work discussed here focused on time-resolved in-situ XAS investigations aiming, first, at understanding structural evolution under dynamic condition...
متن کاملNovel Semisolid Design Based on Bismuth Oxide (Bi2O3) nanoparticles for radiation protection
Objective(S): The dangerous effects of X-ray have been elucidated by scientific studies in occupational health hygiene. X-ray protective like an apron, thyroid shield and gloves have been made of lead (Pb) to protect against X-ray. However, such equipment makes a lot of safety and health problems such as toxicity, weight, inflexibility and troubles usage in a physician. To ove...
متن کامل3d Microscale Characterization and Crystal-plastic Fe Simulation of Fatigue-crack Nucleation and Propagation in an Aluminum Alloy
Critical steps toward designing and developing modern materials include observing, simulating, and predicting 3D deformation and cracking mechanisms at various length scales. In this work, advanced characterization and simulation techniques are employed to study the micromechanisms involved in nucleation and propagation of fatigue cracks in an aluminum alloy used in pressure-vessel structures. ...
متن کاملSynthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors
Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400, 500, and 600°C. It has also been found that the reaction temperature pla...
متن کاملAn iterative method to estimate x-ray attenuation coefficients in computed tomography
Introduction: The basis of image formation in Computed Tomography (CT) lies in the x-ray linear attenuation coefficient of the scanned material. Compton scattering and photoelectric effect are the dominant interactions of the x-ray photons with the subject, in the range of diagnostic radiology. These two coefficients are important in tissue characterization by Dual-Energy CT (D...
متن کامل